MATH 590: QUIZ 12

Name:

Let $A=\left(\begin{array}{ccc}1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & -1 & 1\end{array}\right)$. Follow the steps below to find the Jordan Canonical Form of A and the change of basis matrix P. You may use the fact that $p_{A}(x)=(x-1)^{3}$.
(i) Calculate E_{1}.
(ii) Write down the JCF of A, based upon your answer in (i) and $p_{A}(x)$.
(iii) Calculate $(A-1 \cdot I)^{2}$.
(iv) Find v_{3} not in the null space of $(A-1 \cdot I)^{2}$.
(v) Take $v_{2}:=(A-1 \cdot I) v_{3}$ and $v_{1}:=(A-1 \cdot I) v_{2}$.
(vi) Letting P be the matrix whose columns are v_{1}, v_{2}, v_{3}, verify that $P^{-1} A P$ is the JCF of A.

Solution. (i) E_{1} is the null space of the matrix $\left(\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & -1 & 0\end{array}\right) \xrightarrow{\operatorname{EROs}}\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$, so $\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)$ is a basis for E_{1}.
(ii) The JCF of A is $\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$, since the Jordan box associated to 1 is 3×3 and the number fo Jordan blocks equals one, the dimension of E_{1}.
(iii) $(A-I)^{2}=\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & -1\end{array}\right)$.
(iv) The null space of $(A-I)^{2}$ is the null space of $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$, so we can take $v_{3}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$
(v) We have $v_{2}=\left(\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & -1 & 0\end{array}\right) \cdot\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ and $v_{1}=\left(\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & -1 & 0\end{array}\right) \cdot\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$.
(vi) We have $P=\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0\end{array}\right)$ and $P^{-1}=\left(\begin{array}{ccc}0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$. Thus,

$$
\begin{aligned}
P^{-1} A P & =\left(\begin{array}{lll}
0 & 0 & -1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & -1 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 0
\end{array}\right) \\
& =\left(\begin{array}{lll}
0 & 1 & -1 \\
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 0
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) .
\end{aligned}
$$

