MATH 590: QUIZ 12

Name:

Let $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix}$. Follow the steps below to find the Jordan Canonical Form of A and the change of

basis matrix P. You may use the fact that $p_A(x) = (x-1)^3$.

- (i) Calculate E_1 .
- (ii) Write down the JCF of A, based upon your answer in (i) and $p_A(x)$.
- (iii) Calculate $(A 1 \cdot I)^2$.
- (iv) Find v_3 not in the null space of $(A 1 \cdot I)^2$.
- (v) Take $v_2 := (A 1 \cdot I)v_3$ and $v_1 := (A 1 \cdot I)v_2$.
- (vi) Letting P be the matrix whose columns are v_1, v_2, v_3 , verify that $P^{-1}AP$ is the JCF of A.

Solution. (i) E_1 is the null space of the matrix $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \stackrel{\text{EROs}}{\to} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, so $\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ is a basis for E_1 .

(ii) The JCF of A is $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$, since the Jordan box associated to 1 is 3×3 and the number fo Jordan blocks equals one, the dimension of E_1 .

(iii)
$$(A - I)^2 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & -1 \end{pmatrix}.$$

(iv) The null space of $(A - I)^2$ is the null space of $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, so we can take $v_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ (v) We have $v_2 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$ and $v_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$. (vi) We have $P = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$ and $P^{-1} = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$. Thus, $P^{-1}AP = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$ $= \begin{pmatrix} 0 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$ $= \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.